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STATEMENT OF PROBLEM STUDIED 

Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are 

investigated for the fabrication of robust visible and infrared light emitting devices at a variety of 

wavelengths. GaN:RE devices are extremely versatile emitters which emit light at very specific 

wavelengths and with very narrow spectral linewidth (due to inner shell transitions of the selected RE 

dopants).  We have fabricated singly doped GaN: RE devices emitting “pure” light at the three primary 

visible colors (red, green and blue) and at important IR wavelengths (1.0, 1.3 and 1.5 m). We have also 

shown that co-doping with multiple REs produces “mixed” colors adjustable throughout the color 

spectrum.  These multi-color light emitters have the potential to revolutionize many Army applications, 

such as vehicle and personal displays, secure communications, short-range illuminators, etc.  The 

GaN:RE light emitters are very robust in terms of exposure to high and low temperatures, corrosives, 

radiation, shock, vibration, etc.  

 

STATEMENT OF MOST IMPORTANT RESULTS 

For display applications, the GaN:RE phosphor development plays the major role in the GaN:RE AC 

thick dielectric electroluminescent (TDEL) device optimization. We have succeeded in the fabrication of 

EL devices using Eu-doped GaN red phosphors films grown by our technique of interrupted growth 

epitaxy (IGE). IGE consists of a sequence of ON/OFF cycles of the Ga and Eu beams, while the N2 

plasma is kept constant during the entire growth time.  IGE growth of GaN:Eu resulted in significant 

enhancement in the Eu emission intensity based primarily at 620.5nm. The increase in the material 

crystallinity observed with the IGE phosphors appears to be the dominant cause of the emission 

enhancement. Thick dielectric EL devices fabricated on glass substrates using IGE-grown GaN:Eu have 

resulted in luminance of ~1000 cd/m
2
. 

 

 

INTRODUCTION 

During GaN:RE growth RE ions compete for the substitutional vacancies in the Ga sub-lattice. Therefore, 

slightly nitrogen-rich growth conditions are more suitable for RE incorporation. Nevertheless, the 

deviation from the stoichiometric growth condition adversely affects the crystallinity of the material. Poor 

crystallinity in the phosphor material hinders the hot carrier transport quality and therefore the 

electroluminescence (EL).  

 

In conventional MBE, all molecular beams (Ga and N) are incident upon the growth surface 

simultaneously throughout the entire period and the constituent atoms and molecules are deposited on the 

substrate preferably under stable group V conditions resulting a continuous growth. The short nitrogen 

radical lifetime on the surface allows only for very rapid reaction of Ga and N and immediate formation 

of GaN crystals [1]. Therefore, the MBE growth technique frequently results in the formation of a large 

number of GaN islands on the substrate surface due to the severe limitations in Ga atom migration on the 

surface at the relatively low MBE growth temperatures [2, 3]. The island formation tends to induce a 

columnar growth of the material and results in poor morphology and electrical properties.  

 

Several techniques have been investigated in order to enhance the quality of the semiconductor material, 

including shutter control method [4], nitrogen beam modulation [5], and migration enhanced epitaxy 

(MEE) [6]. All these techniques have as a common feature the goal of increasing the surface migration of 

Ga atoms during GaN growth. A schematic illustrating the source shutter sequences in MBE and MEE 

processes is shown in Fig. 1. The nitrogen flux is interrupted periodically at a constant Ga flux to 

facilitate the surface migration of the Ga atoms. In MEE, the nitrogen and Ga shutters are modulated 

consecutively with no overlap for periods in the order of seconds (~1-2 seconds [7] and 20-40 seconds 

[4]). MEE growth improvements are less pronounced at higher growth temperatures, where the Ga atoms 

have higher surface mobility. Horikoshi [8] provides an excellent review of the MEE growth technique. 
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Fig. 1 Illustration of the shutter sequences in GaN:RE MBE, MEE and IGE growth 

techniques. 

 

The novel growth technique developed during this program is named interrupted growth epitaxy (IGE). 

IGE is a modification of conventional molecular beam epitaxy (MBE) where the group III beams (Ga, Al, 

RE
3+

) are cycled ON and OFF while maintaining a constant group V beam (N) (Fig. 1). In contrast to 

MEE, in IGE relatively long periods (from a few minutes to tens of minutes) of growth are used where all 

beams are incident on the substrate followed by periods where only selected beams are incident. Using 

IGE EL phosphor material of higher quality can be synthesized compared to conventional MBE while 

employing the same growth conditions (beam pressure, substrate temperature, etc.) as conventional MBE.  

 

 

EXPERIMENTAL PROCEDURE 

The different group III cycling sequences employed to evaluate the IGE technique in the preliminary 

study are shown in Table 1. Second and the third columns in the table 1 show the duration at which the 

group III (Ga and Eu) shutters are open and closed during a cycle, respectively. The column four in table 

1 shows the time the group V shutter is open during a single cycle (this corresponds to the total cycle 

time). The sequence with a 60min group III cycling time has both group III and V continuously flowing 

for the entire duration, in other words conventional MBE growth (i.e. all shutters simultaneously open). 

All other growth sequences utilized a 5 min group III OFF time (i.e. only group V is on) introduced 

between consecutive group III ON cycles. The total group III ON time for all sequences is kept constant at 

60 minutes. 
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Table 1 The different group III cycling sequences employed to evaluate the IGE 

technique in the preliminary study in GaN:Eu phosphor growth. 

 

We assumed that the growth of material occurs only during the time period when both group III and V 

shutters were open and that the loss of material through disassociation during the group III OFF period is 

essentially negligible when designing these growth sequences. Achieving a 0.7 m/hr growth rate for all 

the films validated this assumption. MBE growth parameters for the GaN:Eu growth were Ga cell at 900 

°C with a beam equivalent pressure (BEP) of ~4.1x10
-7 

torr and Eu cell at 440 °C. The Eu incorporation 

in the films was found at ~0.1 at.%, which is below the onset of luminescence concentration quenching. 

The growth was carried out at 650°C for Si substrates. Growth was at 800°C thermocouple temperature 

on glass substrates and ceramic back plates were used for maximum heat transfer. The RF nitrogen 

plasma was set at a gas flow of 1.8 sccm with 400W forward power to achieve the optimum growth 

condition.  

 

 

RESULTS AND DISCUSSION 

 

Material Characterization 

To understand the IGE growth technique a controlled experiment was carried out on undoped GaN. The 

material growth was conducted in both conventional MBE and IGE techniques. Other than the 

dissimilarity in growth technique all other growth parameters were kept constant. It is important to point 

out that the growth parameters were not optimized to yield the best GaN epi-layers: slightly Ga-rich 

conditions are preferred for high quality GaN growth and slightly N-rich conditions are preferred for 

GaN:RE phosphor growth. Since the objective of these experiments was to understand the IGE effect on 

GaN:Eu material growth for photonic applications, a III/V ratio that is slightly N-rich (optimized for 

GaN:Eu growth) was used. 

 

Obviously, the best material crystalline quality is desired in GaN:RE phosphor material for efficient 

ACTDEL device applications. As explained previously, the higher the crystallinity of the film the higher 

the probability for loss-free hot electron transport. An advantageous measurement in evaluating the film 

crystalline quality at different stages of growth is the in-situ Reflection High Energy Electron Diffraction 

(RHEED).  
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Fig 2 shows the diffraction patterns observed at 15min intervals for a conventional MBE (Fig. 2a) and 

15min IGE (Fig. 2b) growth of GaN. The polycrystalline GaN produces a spotty RHEED pattern. As the 

crystalline quality decays the hexagonal spotty pattern converts toward a ring shaped diffraction pattern, 

as seen in the conventional MBE GaN. Alternatively, when the crystallinity of the film improves, as 

observed with increasing number of cycles in the IGE GaN, the hexagonal spotty pattern evolves into a 

streaky diffraction pattern. The fact that the 15min IGE GaN RHEED measurements show a more defined 

streaky pattern as the growth time progresses leads to the conclusion that the IGE technique yields better 

crystalline material than the conventional MBE at process parameters optimized for GaN:RE phosphor 

growth. 

 

 

Fig. 2 RHEED patterns observed for un-doped GaN epi layers using conventional MBE 

growth and 4 15 min IGE growth. Except for the growth cycling conditions all other 

growth parameters are identical on both growths. 

 

 

 

Fig. 3 XRD spectra for un-doped GaN epi layers using conventional MBE growth and 

4 15 min IGE growth. SEM microphotographs of un-doped GaN epi layers 

using conventional MBE growth and 4 15 min IGE growth are shown in the 
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inserts. 

 

 

The basic material characterization techniques used for characterization of the undoped GaN IGE epi 

layers are scanning electron microscopy (SEM) and x-ray diffraction (XRD). Fig. 3 illustrates the XRD 

spectra for the 4 15 min IGE and 60 min MBE GaN samples. The inserts of Fig. 3 show SEM 

microphotographs of both films. It is clear from the high intensity of the GaN (0002) peak at 34.5º in the 

IGE GaN film that IGE produces films with a higher crystalline quality compared to conventional MBE. 

The peak observed at 28.4º is the (111) peak from the Si substrate. The above characterization methods 

have proven that GaN epi layers with relatively high crystalline quality can be grown under slightly N-

rich conditions utilizing the interrupted growth epitaxy technique than with the conventional MBE. 

 

Studies on the IGE growth effects on GaN:RE were carried out through GaN:Eu grown on (111) Si 

substrates. After growth, the first evaluation of material quality as an electroluminescent phosphor is 

photoluminescence (PL). The PL characterization is carried out at room temperature using UV (325nm) 

photons from a He-Cd laser. First, the UV photons are absorbed in the GaN host, generating electron-hole 

pairs. Subsequently, the energy of the photo-generated carriers is transferred to Eu centers in the GaN 

host, causing their transition to an excited state from which they can relax by the emission of photons of 

well defined energies [9, 10, 11].  

 

 

Fig. 4 Photoluminescence spectra of GaN:Eu samples grown using various 3 20 min 

IGE and 60 min MBE on Si substrates. Above bandgap PL was measured at 

room temperature under 325nm HeCd laser excitation. 

 

 

Fig. 4 illustrates above bandgap PL spectra for GaN:Eu films grown by 3 20 min IGE and 60 min MBE. 

No GaN band edge emission (at ~365nm) is observed for either film. Efficient transfer of energy from the 

host to the Eu ions followed by radiative relaxation and reduced crystallinity in the GaN layer due to Eu 

doping and the relatively low temperature growth may have caused the absence of GaN band edge 

emission. The most prominent emission peaks at red wavelengths in the spectrum are at 621nm and 

632nm, which correspond to the Eu intra-4f transitions 
5
D0

7
F2 and 

5
D1

7
F4 (tentatively assigned), 

respectively. Clearly the IGE growth technique has a strong influence on the Eu emission intensity. 

Comparing, the intensity of the 
5
D0

7
F2 transition from the IGE sample to the MBE sample, we can see 

that the former has ~3  higher peak intensity. There are several possible explanations for this effect: (a) 
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improvements in crystallinity of IGE films, (b) location of Eu
3+

 ions at different site environments during 

IGE vs. MBE growth. The increase in the PL intensity also indicates that the IGE technique results in 

more optically active Eu
3+

 ions than the conventional MBE technique.  

 

 

Fig. 5 Peak PL intensity at 621nm and 618nm against various IGE ON times on Si 

substrates. Inserts show the PL spectra from GaN:Eu samples with 15min and 

30 min IGE ON times. 

 

 

Careful examination of the PL spectra for different IGE GaN:Eu films show an interesting transition in 

the intensity of the major red emission peak at different group III ON times. Fig. 5 shows the variation of 

the 618 and 621nm peak intensities with IGE conditions. The accurate wavelengths for the peaks that we 

refer to as 618 and 621nm are 618.5 and 620.5nm, respectively. As also shown in the Fig. 5 inserts, at 

shorter IGE ON times (<15min) the major Eu red emission is at 621nm, whereas for longer (>20min) IGE 

ON times the 618nm peak is dominant. This shift of the dominant Eu emission from the 621nm peak to 

the 618nm peak with the increase in IGE cycling time can be attributed to changes in Eu incorporation 

(different concentration of various sites) in the host material structure due to the growth condition 

variations.  

 

Further insight into the emission characteristics of IGE GaN:Eu has been reported by Hömmerich et al. 

[12] through a combination of above-bandgap (333-363nm) and resonant (477nm) excitation. Lifetime 

measurement using time-resolved PL has shown the existence of multiple Eu
3+

 sites within the host. 

 

Electroluminescent Device Characterization 

 

The thick dielectric electroluminescent devices (TDEL) using GaN:RE phosphor material were fabricated 

on glass substrates [13]. A cross sectional view of the GaN:RE TDEL device is shown in the insert of Fig. 

6a. The IGE GaN:Eu phosphor is encapsulated within thin barium titanate (BTO) dielectric layers for 

enhanced charge trapping at phosphor-dielectric interface. A high density, nano-porous PZT thick 

dielectric layer was incorporated to achieve high charge sourcing into the phosphor while enabling the 

device to endure localized imperfections (pinholes, etc.). Finally, front and rear electrodes are situated 

into the structure. The front electrode is generally transparent for visible emission since the light emitted 

from the phosphor will reach the viewer through the front electrode and glass substrate. 
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Fig. 6 (a) Luminance-voltage measurements for 3 20 min IGE GaN:Eu TDEL device. Insert 

shows a cross sectional view of the TDEL device. (b) luminance variation with different 

IGE group III ON times in GaN:Eu TDEL devices. 

 

 

Fig. 6a presents the luminance of 3 20 min IGE GaN:Eu TDEL device as a function of voltage. The 

devices were driven using a 1kHz bipolar square waveform. The above-threshold and pre-threshold slope 

of the luminance-voltage (L-V) plot are also illustrated in Fig. 6a. Clearly, for the best device 

performance the highest above-threshold slope and lowest pre-threshold slope is expected. Ideally, at pre-

threshold voltages the phosphor layer acts as a capacitor. In reality, however, the phosphor material 

always experiences some charge leakage at pre-threshold voltages. The presence of leakage charge can 

cause observable luminance at voltages below turn-on and results in a rather shallow rise in the luminance 

at modulation voltages above turn-on. Fig. 6b shows the luminance of GaN:Eu TDEL devices with 

varying IGE cycles. The luminance is measured at a 240V bias at 1kHz. The strongest device luminance 

of nearly ~1,000 cd/m
2
 is observed for GaN:Eu layers with 3 20 min IGE, representing a >10  increase 

over devices fabricated using 60 min MBE GaN:Eu. 

 



 8 

 

Fig. 7 Device luminance-voltage slope measured at pre-threshold and above-threshold 

luminance for IGE GaN:Eu TDEL devices using films grown with different 

group III ON times. The TDEL devices were driven using bipolar square 

waveform at 1kHz. 

 

 

The above threshold luminance-voltage slope illustrated in Fig. 7 for the optimum IGE devices is much 

steeper than in the MBE device. In addition, the pre-threshold luminance-voltage slope for the optimal 

IGE devices is at the minimum when compared with the MBE device. The sharper luminance increase 

with increasing voltage is due to the increase in luminance efficiency. A possible reason for increased 

device efficiency in the IGE process is the improvement made in the hot electron transport of GaN:Eu 

[14].The pre-threshold luminance reduces the high contrast that is desired in flat panel displays. The 3 20 

min IGE GaN:Eu TDEL device displays a ~10  improvement in contrast over the conventional 60 min 

MBE GaN:Eu devices.  

 

 

CONCLUSIONS 

In conclusion, the IGE technique developed under this ARO contract has demonstrated a significant step 

forward in optimization of in GaN:RE thin films and EL devices. Devices grown with 3 20 min IGE 

cycles have produced a >10  improvement in EL luminance over conventional MBE phosphors reaching 

~1,000 cd/m
2
. The PL measurements of IGE films and devices with various group III cycling indicate the 

possibility of situating Eu atoms in at least two distinct sites within the GaN host. It appears that, the site 

location of the Eu lumophore could be controlled through varying the IGE growth parameters 

systematically. Furthermore, the IGE growth technique has proven itself as an effective method of 

increasing the excitable lumophore concentration in EL devices. 
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